Feature 1 : Long distance high capacity transmission
Low loss LCP materials and high output RF-IC help realize world-class millimeter wave band communications over distances of 500 m at 2 Gbps.
Coverage farther, faster and wider
500m / 2Gbps / ±45°
Our millimeter-wave communications technology contributes to evolution of ICT.
Fujikura provides compact embedded 60 GHz millimeter wave wireless communications modules utilizing a high gain phased array antenna. These are capable of achieving high-speed wireless communication in the 60 GHz frequency band. Their compact design combines a baseband wireless modem function and an antenna with an included RF front end function.
The millimeter wave band is susceptible to large transmission losses due to wiring. Therefore, the wiring between the RF-IC and antenna must be as short as possible in order to maximize the features of the wireless communications module. High efficiency communications can be achieved through selection of low loss materials for the circuit board and modularization of the RF-IC and antenna.
This module is based on the IEEE 802.11ad (WiGig) standard and provides features such as high-power transmission output, scalable channel bandwidth and high-order modulation support. Primary specifications are as follows.
Table 1 : Comparison of module specification
Fujikura | Vendor A | Vendor B | |
---|---|---|---|
RF frequency | 57-71 GHz | 57-64 GHz | 57-64 GHz |
Channel bandwidth | 0.55 / 1.1 / 2.2 GHz | 2.2 GHz | 2.2 GHz |
Modulation method | BPSK to 64QAM | BPSK to 16QAM | BPSK to 16QAM |
Data speed | Approx. 4620 Mbps | Approx. 4620 Mbps | Approx. 4620 Mbps |
Overall transmission output (P1dB) | 21 dBm | 10 dBm | 14 dBm |
Antenna gain (beam angle) | 22 dBi (boresight) >19 dBi (+/- 45 deg) |
N.A. | N.A. |
In-house investigation as of Jan. 2020
This module employs low loss LCP circuit board material and a board layout design that optimizes RF-IC performance for even higher output. This allows it to achieve world-class long-distance transmissions.
Table 2 : Comparison of high-frequency material
LTCC | LCP | Glass | PTFE | PI | |
---|---|---|---|---|---|
εr | 5.9-9.1 | 2.91 | 3.8 | 2.1 | 3.5 |
tanδ | 4.0 x 10-3 | 3.5 x 10-3 | 0.8 x 10-3 | 0.5 x 10-3 | 1.0 x 10-2 |
CTE [ppm/℃] | 6 | 0-40 | 0.4-0.5 | 40 | 20 |
Workability | Good | Excellent | Fair | Fair | Excellent |
Surface | Rough | Rough | Smooth | Smooth | Rough |
Work size | Small | Large | Small | Large | Large |
© 2020 Fujikura Ltd.
Fujikura's original antenna design and electromagnetic field analysis technology led us to develop a 16-element phased array antenna. It not only makes possible stable wide angle ±45 degree automatic beam forming, but at the same time achieves long-range transmission that fully covers the 57 to 71 GHz frequency band.
16QAM 64QAM (Demo video)
2Gbps@500m (Demo video)
Beam forming (Demo video)
The module can be used in communications networks embedded in backhaul equipment, access points (AP), customer premises equipment (CPE), V2X equipment, etc.
Various applications, including video transmission and things like games utilizing VR/AR, are spreading broadly through society. High speed, high capacity communications are required to keep up, but the Sub 6 GHz frequency bands used by 4G are too narrow to accommodate such demands. This is why mobile networks are starting to move from 4G to 5G. In order to achieve the features offered by 5G, including super high-speeds (10 Gbps) offered by enhanced Mobile Broadband, Ultra-Reliable and Low Latency Communications (less than 1 ms) and multiple simultaneous connections (1 million/km2) through massive Machine Type Communication, countries are implementing infrastructure that utilizes the 28 GHz, 38 GHz, 47 GHz and 60 GHz millimeter wave frequency bands. These bands are capable of providing broad bandwidth.
We at Fujikura see it as our mission to continue to help build communications infrastructure. To this end, we continue to provide products that support consecutive technological innovations. We build on technology cultivated over our 135-year history, starting with conductors and moving on to optical cables and wireless communications. Now we are developing millimeter wave devices that incorporate our phased array antenna design technology, FPC production technology and electromagnetic field analysis technology. We have developed an RF module that is combined with an RF-IC, and a communications module with integrated BB-IC. This has allowed us to simultaneously achieve world-class communications speeds (over 2 Gbps) and long-distance transmission (over 500 m).
We are also working on low loss devices like band-pass filters that use silica glass substrates to utilize high frequency bands of 70 GHz or higher.
In order to rapidly send and receive large amounts of data at once, it is essential to increase communication speeds. The use of broad frequency bands is one method for increasing communications speeds. At present, the Ultra-high Frequency (UHF) band, or so-called centimeter wave band, is used for communications. However, this frequency band is divided up for use by various applications. This makes it difficult to secure broad frequency bands.
For example, the 2.4 GHz and 5 GHz bands used by Wi-Fi are limited to bandwidths a mere 0.5 GHz wide or less (See 1 in Fig. 7 below). In contrast, few services have yet been allocated space in the millimeter wave band. This makes it possible to secure broad bandwidths. The 60 GHz band offers bandwidths of 9 GHz in Japan and 14 GHz in the US (See 2 in Fig. 7 below). These broad bandwidths offer communications speeds that are an order of magnitude faster than those of today. This will enable gigabit class high speed communications.
Fujikura will commercialize Phased Array Antenna Module (PAAM) for 5G mmWave operating in 3GPP bands n257 (28 GHz), n258 (26 GHz) and n261 (27 GHz).
Fujikura’s PAAM integrates RF-IC developed in-house, and has the following features.
Fujikura will provide samples for early access customers by the end of 1Q 2021 with volume production in 2H 2021.